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1 Motivation

Neural networks are computational devices inspired by the structure and function of the brain. They have
been used to perform a wide variety of tasks that are difficult with traditional computer software, like
image and voice recognition, and control. Despite advances in computer processing power, progress
in neural networks their adoption has slowed. Neural networks in use today still do not have complex
structures. And most don’t even have multiple kinds of neurons.

One reason for these shortcomings is that there does not exist software that enables the easy construction
of networkswith arbitrary components and topologies. It is true that software for neural networks is read-
ily available – for example, MATLAB provides an easy-to-use toolbox equipped with number of common
neural network learning algorithms. However, these packages provide only the simplest, most common
network types. Building arbitrary neural networks has always required programming.

A second obstacle to the propogation of diverse and interesting neural networks is the lack of a way to
communicate them. Typically, once developed, a model could only be communicated in a way that ob-
scured its structure: either via low-level source code, or by mathematical equations. Thus, understanding
someone’s neural network models meant figuring out their programming style and reading between the
lines of their optimizations, or understanding their idiosyncratic mathematical conventions. This latter
problem makes it perhaps unsurprising that very few neural network researchers use each others’mod-
els.

To solve these problems, it would be ideal to have a high-level language specific to the development
of neural networks. This would help neural networks research advance because both development and
communicationof neural networkmodelswouldbe improved. This is themotivationbehindNNQL.

2 Introduction

The Neural Network Query Language (NNQL) solves the problems mentioned above by providing a clear
language that is designed specifically for developing andmanipulating arbitrary neural networks. NNQL is
based on a simplified SQL-like syntax, treating neural networks as though they are large databases.

Most programming languages require you to think about neural networks in terms ofmatrices and arrays.
Instead NNQL allows you to think at the level of neurons and collections of neurons, and connections
among them. It requires less time spent programming and reduces the likelihood of errors. NNQL code is
faster and easier to write, and is perfect for developing and exploring novel neural network architectures.
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And because of its text-based nature, NNQL is very precise, efficient, and communicable. Models become
easy to replicate and to communicate to others. In a sense, NNQL can serve as a common language for
neural networks researchers.

Finally, NNQL is useful for educational purposes, allowing students to study networks without the over-
head, idiosyncrasies, and esoterica of various programming languages.

NNQL and its implementation, NNQLImpl, are released under theMIT open source license. The full text of
this license is available in theappendix and in the source codedistribution (in afile calledLICENSE.txt).

2.1 Language Features

NNQL provides the following functionality:

• Current-based model neurons

• Spiking neurons (e.g., McCulloch-Pitts, Izhikevich)

• Numerous connectivity patterns, and fan-in / fan-out connection probability

• Axonal conduction delays

• Backpropogation of error (via a special “harness” attached to layers)

• Network simulation from mono audio (.WAV) files

• Network simulation from graphics (.PNG) files [soon]

NNQL can also easily extended to include additional features. Wewelcome the submission of source code
patches to merge back into the NNQL distribution.

2.2 NNQLImpl: An NNQL Implementation

NNQLImpl is an efficient, multicore implementation of the NNQL language in Scala. It is:

• Cross-platform (runs on any Java VM).

• Optimized for multicore (specify how many cores you want to use).

• Minimal dependencies, easy to build/compile.

Other implementations are currently under development.
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2.3 Requirements

Requirements for runningNNQLsimulationsusingNNQLImpl (the following shouldbeplacedon your
CLASSPATH):

• Java (version 1.6 or higher)

• >= Apache commons-io-2.0.1.jar (http://commons.apache.org/io/)

• >= Apache commons-math-2.2.jar (http://commons.apache.org/math/)

©2012 Patryk Laurent and contributors | http://nnql.org 5

http://commons.apache.org/io/
http://commons.apache.org/math/


The Neural Network Query Language (NNQL) Reference

2.3.1 Graphing
NNQL supports graphical output via R, which should be installed on the system if plotting is required from
http://www.r-project.org/. NNQLImpl interacts with R using the RServe library. To install and start
Rserve, use the following commands in R:

• install.packages(Rserve);

• library(Rserve);

• Rserve() [or Rserve(args=’–no-save’); if you are running via a GUI]

NNQLcanalso creategraphsofnetwork structureusingGraphViz fromhttp://www.graphviz.org/.

2.4 General Usage

In general usage of NNQL, the modeler will create groups of neurons (called NUCLEI) and connect them
to each other according to various patterns of connectivity. The modeler will then apply stimuli to these
populations according to a pattern or parameters read from text files, and output from these populations
can also be recorded from into text files.

Please visit the NNQL website or correspond with the author for more infor-
mation on planned features in upcoming versions.

2.5 Credits

Patryk Laurent gratefully acknowledges contributions from:

• Joe Monaco (The Johns Hopkins University) contributions to much of the core code, including file
processing and simulation code.

• Mark Huckvale (University College London) for audio spectrogram FFT code (audio input).
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3 Installing NNQL

3.1 Binary Bundle

The easiest way to begin developing with NNQL to download a binary bundle. The binary bundle allows
you to run all NNQL simulations and includes all of the dependencies for NNQL, including R plotting func-
tions.

To install the NNQL Binary Bundle, follow these steps:

1. Make sure that Java¹ and Scala² are installed.

2. Obtain the NNQL Bundle, NNQLBundle.jar (http://nnql.org/NNQLBundle.jar)
3. Open a terminal and place NNQLBundle.jar on your CLASSPATH, e.g.,:

export CLASSPATH=$CLASSPATH:~/Desktop/NNQLBundle.jar:.

You’re done. Simply compile your NNQL scripts by typing scalac MyScript.scala and run them by
typing scala MyScript.

3.2 Source Code

If youwould like tomakechange to theNNQL language itself, you shoulddownload the source code.

Instructions for this will be forthcoming.

¹To install Java on a Mac, just type “java” in a terminal. If it’s not installed Mac OS X will guide you in the steps to installing it.
²Obtain Scala from http://www.scala-lang.org/downloads and make sure the bin/ directory of Scala is on your PATH.
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4 NNQL Examples

4.1 Example 1 (Two-layer recurrent spiking network)

The following simulates a two-layer recurrent network composed of phasic spiking neurons³.

1 CREATE NUCLEI ("V1", "V2")
2 INSERT NEURON IZ("phasic_spiking") INTO "V1" QUANTITY 30
3 INSERT NEURON IZ("phasic_spiking") INTO "V2" QUANTITY 400
4 PROJECT FULLY FROM NUCLEUS "V1" TO "V2" WEIGHTS U(0.0,1.0) DELAY 35
5 PROJECT FULLY FROM NUCLEUS "V2" TO "V1" WEIGHTS N(1.0,0.5) DELAYS I(15,20)
6 COMPLETE MODEL
7

8 RECORD FROM "V2" INTO "V2Traces"
9 RECORD FROM "V1" INTO "V1Traces"

Once the networkmodel has been created, it can be stimulatedwith input current. The current applied to
each neuron could be specified in an external text file created before running the simulation (this is shown
in later examples). Alternatively, NNQL provides a number of commands to generate input patterns. The
following stimulates the network with a sequence of input currents:

1 SEQ_GENERATOR N(100) SIZE(20) STUTTER(5) SHIFT(20)
2 SEQLEN(5) CURRENT(60) FILENAME("seq.txt") RUN
3 STIMULATE NUCLEUS "V1" FROM "seq.txt"

This creates a file namedseq.txt, containing space-separated rows of numbers. Each row is a time-step
of stimulation, and each number (column) represents the current to inject into each ordered neuron in the
nucleus. To run and graph the network, and then display population raster histograms (like the one on
page 41):

1 EXECUTE MODEL 1000;
2 LIST DOTDIAGRAM(threshold=6.5,scale=0.5) SHOW; // Uses GraphViz to visualize network
3 EXPORT TO "./output"
4 ALL_RECORDERS makePopRaster;

Note that LIST DOTDIAGRAM requires that GraphViz be installed.

³Note: This example uses the abbreviated or “shorthand” form of weight distribution specifications. The use of WEIGHTS
U(x,y) and WEIGHTS N(x,y) replaces full-length lines like WEIGHTS DISTRIBUTION UNIFORM FROM x TO y, and
WEIGHTS DISTRIBUTION NORMAL FROM x TO y that could have been written above each PROJECT statement.
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4.2 Example 2 (A multilayer perceptron)

The following creates a three-layer network appropriate for using backpropagation of error:

1 CREATE NUCLEI ("L1","L2","L3")
2 INSERT NEURON mock INTO "L1" QUANTITY 5
3 INSERT NEURON sigmoid INTO "L2" QUANTITY 5
4 INSERT NEURON sigmoid INTO "L3" QUANTITY 5
5 PROJECT FULLY FROM NUCLEUS "L1" TO "L2" WEIGHTS N(0.1,0.1)
6 PROJECT FULLY FROM NUCLEUS "L2" TO "L3" WEIGHTS N(0.1,0.1)
7 COMPLETE MODEL;

NNQL provides a backpropagation of error training algorithm in the form of a virtual “harness” that is
attached to the multilayer perceptron to train it. The “harness” also supports a context layer for training
Simple Recurrent Networks (SRNs), see the Simple Recurrent Network example.

1 HARNESS(1) ATTACH ("L1", "L2", "L3");
2 LOOP (10000) {
3 HARNESS(1) FEEDFORWARD(1,1,1,0,0) BACKPROP(0,0,1,1,1);
4 HARNESS(1) FEEDFORWARD(0,1,1,0,1) BACKPROP(1,0,0,0,1);
5 }
6 print("Should output 00111: "); HARNESS(1) PROBE(1,1,1,0,0);
7 print("Should output 10001: "); HARNESS(1) PROBE(0,1,1,0,1);

The “harness” also provides a convenience method for stimulating the network with test patterns. How-
ever, this is not necessary: instead, one could STIMULATE NUCLEUS "L1" with the appropriate text
file and record the output from the L3 nucleus.

Note: To add a bias unit, which is often important in these kinds of networks, one can use:

1 INSERT NEURON mock INTO "L1" QUANTITY 1 LABELED "BIAS"
2 PROJECT FULLY FROM UNIT "L1 BIAS" TO "L3" WEIGHTS N(0.0,0.01)

©2012 Patryk Laurent and contributors | http://nnql.org 9
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4.3 Example 3 (XOR Backprop)

1 import nnql.NNQL._;
2

3 object TestXOR extends App {
4 CREATE NUCLEI ("L1","L2","L3")
5 INSERT NEURON mock INTO "L1" QUANTITY 1 LABELED "BIAS" // Bias unit is helpful.
6 INSERT NEURON mock INTO "L1" QUANTITY 2
7 INSERT NEURON sigmoid INTO "L2" QUANTITY 2
8 INSERT NEURON sigmoid INTO "L3" QUANTITY 1
9 PROJECT FULLY FROM NUCLEUS "L1" TO "L2" WEIGHTS N(0.0,0.01)

10 PROJECT FULLY FROM NUCLEUS "L2" TO "L3" WEIGHTS N(0.0,0.01)
11 PROJECT FULLY FROM NUCLEUS "L1 BIAS" TO "L3" WEIGHTS N(0.0,0.01) // Bias unit connect.
12 COMPLETE MODEL;
13

14 HARNESS(1) ATTACH ("L1", "L2", "L3");
15 HARNESS(1) ADDTRIAL( List(-1, 1,1), List(0) ); // XOR 11 -> FALSE
16 HARNESS(1) ADDTRIAL( List(-1, 1,0), List(1) ); // XOR 10 -> TRUE
17 HARNESS(1) ADDTRIAL( List(-1, 0,1), List(1) ); // XOR 01 -> TRUE
18 HARNESS(1) ADDTRIAL( List(-1, 0,0), List(0) ); // XOR 00 -> FALSE
19

20 HARNESS(1) LEARNINGRATE 0.05
21 LOOP (400000) {
22 HARNESS(1) SHUFFLETRIALS EXECUTE
23 EVERY (10000) { HARNESS(1) PRINTSSE }
24 }
25

26 HARNESS(1) PROBE(-1, 1,1); // Should -> 0
27 HARNESS(1) PROBE(-1, 1,0); // Should -> 1
28 HARNESS(1) PROBE(-1, 0,1); // Should -> 1
29 HARNESS(1) PROBE(-1, 0,0); // Should -> 0
30

31 LIST DOTDIAGRAM(0,0.1) SHOW; // Uses GraphViz to visualize network
32 EXPORT TO "./output"
33 }

©2012 Patryk Laurent and contributors | http://nnql.org 10
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4.4 Example 4 (Recurrent spiking McCulloch-Pitts STDP net)

import nnql.NNQL._;

object RecurrentLearningNet extends App {
// (1) Build the recurrent network model.
CREATE NUCLEUS "CA3" COMPETITIVE "10%"
INSERT NEURON McCullochPitts INTO "CA3" QUANTITY 2048
PROJECT FAN_IN FROM NUCLEUS "CA3" TO "CA3" PROBABILITY 0.08 WEIGHTS E(0.4) PLASTICITY "LEVY"
UPDATE NUCLEUS "CA3" SET "ALPHA" TO "0.5"
COMPLETE MODEL

// (2) Train the model on a sequence.
UPDATE NUCLEUS "CA3" SET "SYNMODRATE" TO "0.003"
SEQ_GENERATOR N(1024) SIZE(20) STUTTER(3) SHIFT(20) SEQLEN(5) FILENAME("sequence.txt") RUN;
STIMULATE NUCLEUS "CA3" FROM "sequence.txt" POFFNOISE 0.10
LOOP (100) {

RECENT_STIMULATOR rewind;
EXECUTE MODEL 40;
print(".")

}

// (3) Start recording. Present the sequence so we can see how the network fires.
RECORD FROM "CA3" INTO "CA3Traces";
UPDATE NUCLEUS "CA3" SET "SYNMODRATE" TO "0.0"
RECENT_STIMULATOR rewind;
EXECUTE MODEL 50;
RECENT_STIMULATOR deactivate;

// (4) Now, present just the first pattern of the sequence to test recall.
SEQ_GENERATOR N(1024) SIZE(20) STUTTER(3) SHIFT(20) SEQLEN(1) FILENAME("testprobe.txt") RUN;
STIMULATE NUCLEUS "CA3" FROM "testprobe.txt" POFFNOISE 0.10
EXECUTE MODEL 50;
ALL_RECORDERS makePopRaster;

}

An example of visual output from the simulation is shown in Figure 1 on page 12

©2012 Patryk Laurent and contributors | http://nnql.org 11
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Figure 1: Spiking Output of Example Recurrent Spiking McCulloch-Pitts Network. On the left is an
instance of the training sequence. On the right, only the first pattern of the sequence is presented to the
network. The network then recalls the sequence of activated input patterns. Output was generated using
themakePopRaster command. Each short horizontal bar is a spike.

©2012 Patryk Laurent and contributors | http://nnql.org 12
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4.5 Example 5 (Simple Recurrent Network)

A simple recurrent network can use its recurrent connections as a sort of working memory, as demon-
strated by the following example. First, we create two pairs of files, representing two desired input se-
quences and two desired output sequences, respectively.

srnseqinp1.txt

1 1 1 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0

srnseqinp2.txt

1 0 0 0 1 1
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0

srnseqout1.txt

1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 1 1 0 0 0

srnseqout2.txt

1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 1 1

Next, we create a Simple Recurrent Network (SRN). An SRN is amultilayer perceptronwhich has a “context
layer” that copies the contents of the hidden layer on each time-step.

1 CREATE NUCLEI ("L1","LC","L2","L3")
2 INSERT NEURON mock INTO "L1" QUANTITY 5
3 INSERT NEURON mock INTO "LC" QUANTITY 10
4 INSERT NEURON sigmoid INTO "L2" QUANTITY 10
5 INSERT NEURON sigmoid INTO "L3" QUANTITY 5
6 PROJECT FULLY FROM NUCLEUS "L1" TO "L2" WEIGHTS N(0.01,0.1)
7 PROJECT FULLY FROM NUCLEUS "LC" TO "L2" WEIGHTS N(0.01,0.1)
8 PROJECT COPY FROM NUCLEUS "L2" TO "LC" WEIGHTS E(1.0)
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9 PROJECT FULLY FROM NUCLEUS "L2" TO "L3" WEIGHTS N(0.01,0.1)
10 COMPLETE MODEL;

Notice that a COPY projection must be made from Layer 2 (L2) to the Context Layer (LC)⁴.

Using the same kind of backprop harness as was used for the multilayer perceptron, we train the SRN on
the two pairs of sequences:

1 HARNESS(1) ATTACH ("L1", "LC", "L2", "L3");
2 HARNESS(1) LEARNINGRATE 0.01
3 HARNESS(1) ADDTRIAL("srnseqinp1.txt", "srnseqout1.txt");
4 HARNESS(1) ADDTRIAL("srnseqinp2.txt", "srnseqout2.txt");
5

6 LOOP (500000) {
7 HARNESS(1) SHUFFLETRIALS EXECUTE;
8 EVERY (10000) { HARNESS(1) PRINTSSE }
9 }

Test the network to see if it was able to maintain the information over time.

1 println("Probe 11000 on input, expect to get 11000 on output in 3 ticks.");
2 HARNESS(1) CLEAR; HARNESS(1) PROBEFILE ("srnseqinp1.txt");
3 println("^^ should be ~ 11000");
4

5 println("Probe 00011 on input, expect to get 00011 on output in 3 ticks.");
6 HARNESS(1) CLEAR; HARNESS(1) PROBEFILE ("srnseqinp2.txt");
7 println("^^ should be ~ 00011");

The structure of the network can be graphed using LIST DOTDIAGRAM, provided that GraphViz is in-
stalled.

⁴The harness needs to be made aware of the context layer so that it can clear it between sequence presentations. However,
the harness does not automatically copy the hidden unit activations to the context layer. Therefore, for correct functioning,
the SRN’s context layer in the SRNmust receive a projection from the hidden units (see the use of PROJECT COPY in the simple
recurrent network example) of the hidden layer activations.
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4.6 Example 6 (Simple Recurrent Network, no files)

Here is a version of the simple recurrent net frombefore, but without dependence on external files.

1 import nnql.NNQL._;
2

3 object NNQL_TestBpHarnessSRN0 extends App {
4 CREATE NUCLEUS "L1" // input layer
5 CREATE NUCLEUS "LC" // context layer
6 CREATE NUCLEUS "L2" // hidden layer
7 CREATE NUCLEUS "L3" // output layer
8 INSERT NEURON mock INTO "L1" QUANTITY 5
9 INSERT NEURON mock INTO "LC" QUANTITY 6

10 INSERT NEURON sigmoid INTO "L2" QUANTITY 6
11 INSERT NEURON sigmoid INTO "L3" QUANTITY 5
12 PROJECT FULLY FROM NUCLEUS "L1" TO "L2" WEIGHTS N(0.1,0.4)
13 PROJECT FULLY FROM NUCLEUS "LC" TO "L2" WEIGHTS N(0.1,0.4)
14 PROJECT COPY FROM NUCLEUS "L2" TO "LC" WEIGHTS E(1.0) // these are "constant" weights.
15 PROJECT FULLY FROM NUCLEUS "L2" TO "L3" WEIGHTS N(0.1,0.1)
16 COMPLETE MODEL;
17

18 HARNESS(1) ATTACH ("L1", "LC", "L2", "L3");
19 HARNESS(1) LEARNINGRATE 0.01
20

21 HARNESS(1) ADDTRIAL ( () => {
22 HARNESS CLEAR;
23 HARNESS(1) FEEDFORWARD(1,1,0,0,0) BACKPROP(0,0,0,0,0);
24 HARNESS(1) FEEDFORWARD(0,0,0,0,0) BACKPROP(0,0,0,0,0); // Delay period
25 HARNESS(1) FEEDFORWARD(0,0,0,0,0) BACKPROP(0,0,0,0,0); // Delay period
26 HARNESS(1) FEEDFORWARD(0,0,0,0,0) BACKPROP(1,1,0,0,0);
27 })
28

29 HARNESS(1) ADDTRIAL ( () => {
30 HARNESS(1) CLEAR;
31 HARNESS(1) FEEDFORWARD(0,0,0,1,1) BACKPROP(0,0,0,0,0);
32 HARNESS(1) FEEDFORWARD(0,0,0,0,0) BACKPROP(0,0,0,0,0); // Delay period
33 HARNESS(1) FEEDFORWARD(0,0,0,0,0) BACKPROP(0,0,0,0,0); // Delay period
34 HARNESS(1) FEEDFORWARD(0,0,0,0,0) BACKPROP(0,0,0,1,1);
35 })
36

37 LOOP (400000) {
38 HARNESS(1) SHUFFLETRIALS;
39 HARNESS(1) EXECUTE;
40 EVERY (10000) { HARNESS(1) PRINTSSE }
41 }
42

43 println("Probe 11000 on input, expect to get 11000 on output in 3 ticks.");
44 HARNESS(1) CLEAR;
45 HARNESS(1) PROBE (1,1,0,0,0);
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46 HARNESS(1) PROBE (0,0,0,0,0);
47 HARNESS(1) PROBE (0,0,0,0,0);
48 HARNESS(1) PROBE (0,0,0,0,0); println("^^ should be ~ 11000");
49

50 println("Probe 00011 on input, expect to get 00011 on output in 3 ticks.");
51 HARNESS(1) CLEAR;
52 HARNESS(1) PROBE (0,0,0,1,1);
53 HARNESS(1) PROBE (0,0,0,0,0);
54 HARNESS(1) PROBE (0,0,0,0,0);
55 HARNESS(1) PROBE (0,0,0,0,0); println("^^ should be ~ 00011");
56

57 LIST DOTDIAGRAM(0.45,0.6) SHOW;
58 EXPORT TO "./output"
59 }
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5 NNQL Statement Syntax

The first section, entitled Network Definition Statements, describes commands that are used to define a
network, such as CREATE, INSERT, and COMPLETE.

The next section describes Network Manipulation statements, which include commands that alter the
structure or composition of an existing network.

The following section describes Input andOutput statements that are important formoving data into and
out of the simulation. These include commands such as STIMULATE and RECORD. It will also include
commands that enable protocols for communication with external visualization programs.

5.1 Network Definition Statements

The commands in this section are used to create neural networks.
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5.1.1 CREATE NUCLEUS Syntax

CREATE NUCLEUS ‘‘name′′

CREATE NUCLEUS ‘‘name′′ COMPETITIVE nn%

PURPOSE

ANucleus is a collection of neurons of potentially different types. The CREATE NUCLEUS command cre-
ates anucleus intowhichneurons canbeINSERTedorbetweenwhichPROJECTions canbemade.

For example:

CREATE NUCLEUS ”V1”
CREATE NUCLEUS ”V2”
CREATE NUCLEUS ”MT”

or

CREATE NUCLEI (”V1”, ”V2”, ”MT”)

creates three nuclei.

PARAMETERS

COMPETITIVE Specifies the maximum number of neurons that can be co-active at any given
time-step. Ifmore than that number of neurons are active, thosewith the highest
activity level (i.e., membrane voltage) are taken to be “winners” and are allowed
to be active on that time-step.
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5.1.2 INSERT NEURON Syntax

INSERT neuronType INTO ‘‘nucleus′′ [QUANTITY quantity] [LABELED “label”]

PURPOSE

This command instantiates simulatedneuronsof thegiven typeandassociates themwith anucleus.

PARAMETERS

neuronType The type of neuron. There are several specific kinds of neurons built into NNQL:
Izhikevich, Sigmoid,mock (Linear), McCulloch-Pitts (e.g., Linearwith a threshold).

QUANTITY The number of neuron units to insert.

LABELED Label to be associated with the created neurons. This should be a single word
without spaces. (Future versions may allow multiple labels to be specified with
spaces.)

Neuron types

The Izhikevich class of integrate-and-fire neurons can be inserted using the following syntax:

INSERT NEURON izhikevich(a,b,c,d,defaultI) INTO nucleus QUANTITY quantity

INSERT NEURON izhikevich(‘‘type′′) INTO nucleus QUANTITY quantity

INSERT NEURON IZ(a,b,c,d,defaultI) INTO nucleus QUANTITY quantity

INSERT NEURON IZ(‘‘type′′) INTO nucleus QUANTITY quantity

An Izhikevich neuron implements neurons with the following equations:

v′ = 0.04v2 + 5v + 140− u+ I (1)

u′ = a(bv − u) (2)

with after-spike resetting,

if v ≥ +30mV, then

{
v ← c

u← u+ d.
(3)
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where “type” selects the following parameters for a,b,c and d in the equations as provided by Izhikevich
(2004):

"izhikevich_tonic_spiking" a= 0.02; b= 0.2; c= -65; d= 6; defaultI= 14;
"izhikevich_phasic_spiking" a= 0.02; b= 0.25; c= -65; d= 6; defaultI= 0.5;
"izhikevich_tonic_bursting" a= 0.02; b= 0.2; c= -50; d= 2; defaultI= 15;
"izhikevich_phasic_bursting" a= 0.02; b= 0.25; c= -55; d= 0.05; defaultI= 0.6;
"izhikevich_mixed_mode" a= 0.02; b= 0.2; c= -55; d= 4; defaultI= 10;
"izhikevich_spike_freq_adapt" a= 0.01; b= 0.2; c= -65; d= 8; defaultI= 30;
"izhikevich_class_1" a= 0.02; b= -0.1; c= -55; d= 6; defaultI= 0;
"izhikevich_class_2" a= 0.2; b= 0.26; c= -65; d= 0; defaultI= 0;
"izhikevich_spike_latency" a= 0.02; b= 0.2; c= -65; d= 6; defaultI= 7;
"izhikevich_subthresh_osc" a= 0.05; b= 0.26; c= -60; d= 0; defaultI= 0;
"izhikevich_resonator" a= 0.1; b= 0.26; c= -60; d= -1; defaultI= 0;
"izhikevich_integrator" a= 0.02; b= -0.1; c= -55; d= 6; defaultI= 0;
"izhikevich_rebound_spike" a= 0.03; b= 0.25; c= -60; d= 4; defaultI= 0;
"izhikevich_rebound_burst" a= 0.03; b= 0.25; c= -52; d= 0; defaultI= 0;
"izhikevich_thresh_var" a= 0.03; b= 0.25; c= -60; d= 4; defaultI= 0;
"izhikevich_bistability" a= 1; b= 1.5; c= -60; d= 0; defaultI= -65;
"izhikevich_DAP" a= 1; b= 0.2; c= -60; d= -21; defaultI= 0;
"izhikevich_acommodation" a= 0.02; b= 1; c= -55; d= 4; defaultI= 0;
"izhikevich_inhib_i_spike" a= -0.02; b= -1; c= -60; d= 8; defaultI= 80;
"izhikevich_inhib_i_burst" a= -.026; b= -1; c= -45; d= 0; defaultI= 80;

A linear neuron (that is, one without a non-linear activation function) can be inserted using the following
syntax:

INSERT NEURON mock INTO nucleus QUANTITY quantity

The linear neuron performs a weighted sum of its inputs on a given time-step, and provides the result on
its output.

yj(t) =
n∑

i=1

wij · Zi(t− 1). (4)

A McCulloch-Pitts neuron can be inserted using the following syntax:
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INSERT NEURON McCullochPitts(threshold) INTO nucleus QUANTITY quantity

INSERT NEURON McP(threshold) INTO nucleus QUANTITY quantity

It has the same activation function as the linear neuron:

yj(t) =

n∑
i=1

wij · Zi(t− 1). (5)

But its output is thresholded so that firing occurs if the excitation exceeds a threshold θt :

Zj(t) =

{
1 if yj(t) > θt or xj(t) = 1

0 otherwise,
(6)
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5.1.3 WEIGHTS DISTRIBUTION Syntax
The WEIGHTS statement sets a globally accessible specification for the values of synaptic weights. Sub-
sequent PROJECT statements will use this specification for creating connections by default (this can be
overriden by an in-line WEIGHTS keyword, see Section 5.1.4).

There are two equivalent ways to specify fixed (constant) weights:

WEIGHTS ALL value
WEIGHTS DISTRIBUTION EQUAL TO value

These statements specify randomly distributed weights with optional bounds:

WEIGHTS DISTRIBUTION distributionName PARAM1 value ...
WEIGHTS DISTRIBUTION NORMAL MEAN 1.0 STD 0.5
WEIGHTS DISTRIBUTION NORMAL MEAN 1.0 STD 0.5 LOWER 0.0
WEIGHTS DISTRIBUTION UNIFORM FROM 0.0 TO 1.0

NOTE:Weight distributions canbe specified as part of aPROJECT statement, and a short form (i.e., abbre-
viation) for each weight distribution can be used in those statements. See PROJECT Syntax, section 5.1.4
on page 24.

PURPOSE

Sets thedistributionof synapticweights for subsequentprojectionsmadeusingPROJECT statements.

PARAMETERS
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EQUAL TO All of the weights are set to the same given constant value. However, these pro-
jections are not fixed to that constant value and can be changed by synaptic
modification.

NORMAL This keyword describes a normal distribution. It has parameters, MEAN (or MU)
and STD (or SIGMA).

UNIFORM This keyword describes a continuous uniform distribution. It has parameters
FROM and TO.

INTEGERS This keyword describes a discrete uniform distribution on the integers. It has
parameters FROM and TO.

GAMMA This keyword describes a gamma distribution. It has parameters SCALE and
SHAPE.

LOWER This keyword sets a lower bound for weights (ignored for DISTRIBUTION
EQUAL). The bound is enforced by resampling, and a warning is printed if re-
sampling exceeds 200 tries without finding a valid weight value.

UPPER This keyword has the same behavior as LOWER, but sets an upper bound for
weights.
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5.1.4 PROJECT Syntax

PROJECT FULLY FROM NUCLEUS ”nucleus1” TO ”nucleus2”
PROJECT COPY FROM NUCLEUS ”nucleus1” TO ”nucleus2” WEIGHTS E(1.0)
PROJECT FULLY FROM NUCLEUS ”nucleus1” TO ”nucleus2” [DELAY 50]
PROJECT FULLY FROM NUCLEUS ”nucleus1” TO ”nucleus2” [WEIGHTS N(mean, std)]
PROJECT FULLY FROM NUCLEUS ”nucleus1” TO ”nucleus2” [WEIGHTS E(value)]
PROJECT FULLY FROM UNIT 1001 TO ”nucleus2” [WEIGHTS E(value)]
PROJECT FAN_IN FROM NUCLEUS ”n1” TO ”n2” PROBABILITY 0.10 WEIGHTS E(0.4) PLASTICITY ”LEVY”
PROJECT FAN_IN FROM NUCLEUS ”n1” TO ”n2” PROBABILITY 0.10 WEIGHTS E(0.4) PLASTICITY ”OJA”

PURPOSE

Establishes a feedforward projection from nucleus1 to nucleus2.

PARAMETERS

DELAY The DELAY parameter adds constant conduction delay of the specified value (in
terms of ticks, i.e., the time-step of integration) to each projection. If the time-
step of integration of the simulation is set to 1 ms, then DELAY 50 introduces a
50 millisecond time-step delay.

DELAYS TheDELAYSparameter provides randomly distributed delays for this projection.
DELAYS takes a shorthand notation for the random distribution to be used to
sample the conduction delays (see shorthand definition for WEIGHTS below).
Note that sampled delays are cast to integers without rounding.

WEIGHT The WEIGHT parameter specifies a fixed weight value for this projection. That is,
WEIGHT value is a synonym for WEIGHTS E(value), using the distribution short-
hand described below for WEIGHTS.

PROBABILITY The FAN_IN and FAN_OUT projection types require a specification of the
PROBABILITY. For example, a FAN_IN probability of 10% means that each
postsynaptic neuron receives projections from 10% of the presynaptic neurons.
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WEIGHTS TheWEIGHTSparameterprovides aweightsdefinition specific to this projection.
This overrides the current global weights definition (if any) within the scope of
the current PROJECT statement. The WEIGHTS parameter takes a shorthand
notation for specifying either fixed or randomly distributed weights. The dis-
tribution is specified by N (normal), E (equal), U (uniform) or G (gamma). Each
distribution takes parameters as follows: N(mean,std), E(value), U(lowerBound,
upperBound), and G(scale,shape).

PLASTICITY The PLASTICITY parameter, if present, indicates the kind of synapticmodification
rule that is present. Parameters for the plasticity, like a learning rate constant or
time-span of associativity, can be set at the level of the nucleus.
( “LEVY” or its synonym ”TEMPASSYMHEBB”; ”OJA”.)

PROJECTION TYPES

The COPY projection type provides a 1-to-1 projection mapping. It therefore requires that the source
and target nuclei have the same number of neurons. This is useful for setting up context layers in Simple
Recurrent Networks (also called “Elman networks”).

Other connectivity patterns will be implemented (currently, only FULLY , COPY and FAN_IN are imple-
mented.) Some of these connectivity patterns include:

PROJECT RANDOMLY FROM NUCLEUS ”nucleus1” TO ”nucleus2” PROBABILITY percentage

PROJECT TOPOGRAPHICALLY FROM NUCLEUS ”nucleus1” TO ”nucleus2” PROBABILITY percentage

PROJECT LOCALLY FROM NUCLEUS ”nucleus1 TO ”nucleus2” PROBABILITY percentage

PROJECT UNIFORMLY FROM NUCLEUS ”nucleus1” TO ”nucleus2” PROBABILITY percentage

PLASTICITY: LEVY or TEMPASSYMHEBB

LEVY or its synonym TEMPASSYMHEBB plasticity specifies a temporally-asymmetric Hebbian-like learn-
ing rule inspiredby spike-timingdependent plasticity or STDP,which is a temporal contiguity requirement
for long-term potentiation (Bi and Poo, 1998; Levy and Steward, 1983; Markram et al., 1997). Each weight
from neuron i to neuron j is updated only on time-steps when the post-synaptic neuron j is active (i.e.,
Zj = 1). The update depends on the difference between the current weight wij and a running average
of afferent presynaptic activity,

wij(t+ 1) = wij(t) + µ · Zj(t)
(
Z̄i(t− 1)− wij(t)

)
, (7)
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where the running averager Z̄i(t− 1) saturates when the presynaptic neuron fires, and decreases expo-
nentially otherwise, i.e.,

Z̄i(t) =

{
1 if Zi(t) = 1,

α · Z̄i(t− 1) otherwise.
(8)

The use of a running average of afferent presynaptic activity for weight modification is intended tomimic
a saturate-and-decaymodel of theNMDA receptor. Equation 4 indicates that the running average of firing
activity is updated on every time-step for each neuron i. The quantity α is a time-constant of the decay
(i.e., of the modeled NMDA receptors) (NNQL: NUCLEUS ``ALPHA''). The parameter µ is a synaptic
weight modification rate constant or “learning rate” (NNQL: NUCLEUS ``SYNMODRATE'').

PLASTICITY: OJA

OJA plasticity specifies a normalized Hebbian (co-activation) learning rule that is guaranteed to be sta-
ble. The present implementation assumes the neuron’s activations are linear weighted sums of their in-
puts.

∆w = wn+1 −wn = η yn(xn − ynwn), (9)

According to Wikipedia (page last updated April 20, 2011), this is derived by taking a standard Hebbian
rule:

wi(n+ 1) = wi + η y(x)xi (10)

and implementing normalization so the afferent weights are restricted in the range of 0 to 1 (0 means no
afferent weight, 1 means the only one afferent neuron with a weight):

wi(n+ 1) =
wi + η y(x)xi(∑m

j=1[wj + η y(x)xj ]p
)1/p

(11)

which can be factored into:

wi(n+ 1) =
wi(∑

j w
p
j

)1/p
+ η

 yxi(∑
j w

p
j

)1/p
−

wi
∑

j yxjwj(∑
j w

p
j

)(1+1/p)

 + O(η2) (12)
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This equation simplifies to Oja’s rule :

wi(n+ 1) = wi + η y(xi − wiy) (13)

if we make the following three assumptions:

(A) we have a small learning rate where the O(n2) higher order terms go to zero,

O(η2) = 0 (14)

(B) we have linear weighted neurons, that is, the output of the neuron is equal to the sum of the product
of each input and its synaptic weight, or

y(x) =
m∑
j=1

xjwj (15)

(C) we also specify that our weights normalize to 1 (whichwill be a necessary condition for stability)

|w| =

 m∑
j=1

wp
j

1/p

= 1 (16)
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5.1.5 COMPLETE MODEL Syntax

COMPLETE MODEL

PURPOSE

This command ensures that themodel is completely assembled prior to executing it. (Although currently
required, this command will be deprecated in future versions of NNQL.)

PARAMETERS

None.

5.2 Network Manipulation Statements

Thecommands in this sectionareused tomanipulateneural networksonce theyhavebeencreated.
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5.2.1 EXECUTE MODEL Syntax

EXECUTE MODEL NUMTICKS

PURPOSE

This command executes the model for the specified number of ticks, e.g., EXECUTE MODEL 1000.

While a model is executed, all connected Stimulators and Recorders are updated. That is, on every time-
step, each Stimulator stimulates the neurons to which it is connected. Similarly, each Recorder records a
sample from the neurons to which it is connected.

PARAMETERS

NUMTICKS The number of ticks to run the model for.
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5.2.2 UPDATE NUCLEUS Syntax

UPDATE NUCLEUS ‘‘name′′ SET ‘‘parameter′′ TO ‘‘n′′

PURPOSE

Sets a parameter that applies to all units within the nucleus.

For example:

UPDATE NUCLEUS ”CA3” SET ”SYNMODRATE” TO ”0.005”

PARAMETERS

SYNMODRATE Synaptic modification rate for learning mechanisms like STDP.
ALPHA Time constant for associative synaptic modification in STDP.
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5.2.3 HARNESS Syntax

HARNESS (”NAME1”) HARNESS (”NAME1”) ATTACH (‘‘inputLayer′′, ‘‘hiddenLayer′′, ‘‘outputLayer′′)
HARNESS (”NAME1”) ATTACH (‘‘inputLayer′′, ‘‘contextLayer′′, ‘‘hiddenLayer′′, ‘‘outputLayer′′)
HARNESS (”NAME1”) CLEAR
RECENT_HARNESS CLEAR
RECENT_HARNESS LEARNINGRATE n.nn
RECENT_HARNESS ADDTRIAL (‘‘inputPattern.txt′′, ‘‘outputPattern.txt′′)
RECENT_HARNESS ADDTRIAL (List(a,b,c,d), List(x,y,z,w))
RECENT_HARNESS SHUFFLETRIALS
RECENT_HARNESS EXECUTE
RECENT_HARNESS PROBE (List(a,b,c,d))
HARNESS (”NAME1”) PROBEFILE (‘‘filename′′)
RECENT_HARNESS PRINTSSE

PURPOSE

Registers a set of nuclei for learning via backpropagation of error. A harness can be attached either to a
three-layer perceptron or a simple recurrent network.

©2012 Patryk Laurent and contributors | http://nnql.org 31



The Neural Network Query Language (NNQL) Reference

5.3 Data Input and Output Statements

This commands in this section describe how data is moved into and out of the simulations.

Additional commands that will be described in this section (as they are implemented) include EVENT streams,
TCP/IPmodular connections, audio file input/output, and image sequence input/output.
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5.3.1 DESCRIBE Syntax

DESCRIBE nucleus

PURPOSE

This command prints out information about a nucleus, including the properties of the neurons that can
be SELECTed.

PARAMETERS

None.
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5.3.2 SELECT Syntax

SELECT (VOLTAGE) FROM ”nucleus” NOW
SELECT (VOLTAGE,SPIKED) FROM ”nucleus” NOW
SELECT (VOLTAGE,SPIKED) FROM ”nucleus” INTO ”results.txt”

PURPOSE

This commandprints out data from the neurons in a nucleus, including its neuronal contents, and average
connectivity.

PARAMETERS

None.
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5.3.3 STIMULATE NUCLEUS Syntax

STIMULATE NUCLEUS ”nucleus1” FROM ”filename”
STIMULATE NUCLEUS ”nucleus1” FROM ”filename” POFFNOISE 0.10
STIMULATE NUCLEUS ”nucleus1” FROM ”monoSoundFile.WAV ”
STIMULATE NUCLEUS ”nucleus1” FROM ”image.PNG”
STIMULATE NUCLEUS ”nucleus1” FROM ”image.PNG@widthxheight”
STIMULATE NUCLEUS ”nucleus1” FROM ”image.png@20x20”
STIMULATOR “sound” ADD (0,0,1,0,0,0,1,1,1,0,0)
STIMULATE NUCLEUS “nucleus1” NAMED “pairs”
STIMULATOR “pairs” ADD(1,0) ADD(1,1) ADD(0,0) ADD (1,0)

A Stimulator provides input (clamping current) to the associated neurons in the specified Nucleus. If the
input is from a text file, each column of the file becomes associated with each neuron N (for as many
columns C are in the file; C can be smaller than N). If there are more columns than neurons, only the first
columns are used. If there aremore neurons than columns, all of the columns are used and the remainder
of the neurons in the nucleus are not stimulated by the contents of the file.

Images. Stimulators support loading of PNG image graphics; these are recognized by having the .PNG
extension. Note thatNNQLcurrently converts the image tograyscaleusing the formula: 30%of red, 59%of
green, 11%of blue. NNQL can also scale an image to the desired pixel dimensionswhen you add the suffix
@widthxheight, e.g., ”image.png@20x30”. This scales the image to be 20 pixels wide by 30 pixels high. The
input to the network layer is a single time-step vector consisting of each raster line of the image.

Audio. Stimulators support loading of mono audio files; these are recognized by having the .WAV exten-
sion. NNQLpasses the audio files through a Fast-Fourier Transform (FFT) to yield normalized spectrograms
which are suitable for feeding into neural networks as currents. The input to the network layer is a list of
vectors, one for each time point resulting from the FFT. Each element of the vector represents a frequency
band. In the present version of NNQL, the FFT is parametrized so that the audio is transformed into 50 fre-
quency band bins, and 100 time-steps. Only the first second (1 s) of audio is processed from each sample.
Future versions of NNQL will allow custom specification of these parameters.

PARAMETERS
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FROM Name of the file from which to read the currents to stimulate the nucleus with.

POFFNOISE Probability with which to deactivate any particular element in a time-step vector
(set the current to 0 for) an input.

©2012 Patryk Laurent and contributors | http://nnql.org 36



The Neural Network Query Language (NNQL) Reference

5.3.4 RECORD FROM Syntax

RECORD FROM ”nucleusName” INTO ”tracename”
RECORDER ”tracename” SAVETO ”filename”
RECORD FROM ”LAYER1” INTO ”MyTraces1”
RECORDER ”MyTraces1” SAVETO ”traces1.txt”

RECORD FROM sets up a Recorder, which samples current from the neurons in the associated Nucleus.
T

RECORDER x SAVETO y saves the traces in the recorder into a file.
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5.3.5 LIST MODEL Syntax
The LIST command outputs textual and graphical descriptions of models built in NNQL.

LIST MODEL

PURPOSE

This command lists all the components in a model, the statements that created it, along with applicable
references to the literature.

PARAMETERS

None.
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5.3.6 LIST DOTDIAGRAM Syntax

LIST DOTDIAGRAM(threshold, scale) SHOW;
LIST DOTDIAGRAM(1,0.1) SHOW;

Outputs a diagramof themodel as a directed graph, see Figure 2 on page 40. The output is in DOT format,
and can be plotted by applications such as GraphViz.

Graph Edges. Positive weights are indicated by red lines with an inverted-triangle line termination and
negative weights are indicated by blue lines with a T termination. Only weights whose absolute value ex-
ceeds the threshold specifiedby the thresholdparameter aredisplayed. The thickness of the lines indicates
the numerical value of the weight, scaled by the scale parameter.

Labels. Each unit is labeledwith its unique ID number (starting by default from 1001) as well as any labels
that have been applied to it (see labeled keyword in INSERT NEURON syntax, section 5.1.2 on page 19. All
units are surrounded by a box representing their nucleus. The nucleus is also labeled by its name.

PARAMETERS

SHOW Uses GraphViz (if installed) to visually display the graph.

NOTES

Future versions of this command will allow you to specify which nuclei to plot.
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Figure 2: Example DOT diagram of a three-layer network. This is an example network diagram gener-
ated by NNQL. The numbers on each neuron reflect the unique ID number assigned to the neuron in the
current simulation
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5.4 Plotting

A Recorder exposes functions that allow plotting. In particular, currents for the recorded neurons can be
plotted using themakePlot command, or a single raster plot of all the neurons can be generated by using
makePopRaster⁵.

Figure 3: Example voltage plot. This is an example voltage plot generated by NNQL by calling makePlot
on a RECORDER (e.g., RECENT_RECORDER or ALL_RECORDERS).

⁵In the future, a makeTrialEventRaster will be implemented.
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Figure 4: Example raster plot. This is an example population raster generated by NNQL by calling make-
PopRaster on a RECORDER (e.g., RECENT_RECORDER or ALL_RECORDERS).

Figure 5: Example similarity plot. This is an example cosine similarity plot generated by NNQL by call-
ingmakeSelfSimilarity on a RECORDER (e.g., RECENT_RECORDER or ALL_RECORDERS). The repeated fuzzy
pattern in the upper-right corner indicates successful sequence recall.
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5.4.1 RECORDER Syntax

RECORDER “recorder1” makePlot
RECORDER “recorder2” listSpikeCounts
RECORDER “recorderX” makePopRaster
RECORDER “recorderName” makeSelfSimilarity

ALL_RECORDERS makePlot, etc...
RECENT_RECORDER makePlot, etc...

NOTE: Instead of addressing a RECORDERbyname, one can also access themost recently created recorder
(RECENT_RECORDER), or collection of all recorders (ALL_RECORDERS).

PURPOSE

Recorders allow the user to store firing patterns from a NUCLEUS into memory for later analysis, plotting,
or saving into a file.

COMMANDS

makePlot Makes plots of the voltages of all the neurons associated with the Recorder(s).

listSpikeCounts Displays the spike counts of all spiking neurons associated with the Recorder(s).

makePopRaster Generates a population raster graph of all the neurons associated with the
Recorder(s).

makeSelfSimilarity Displays a similarity plot of all recorded activity against itself. Ideal if the stimu-
lator has recorded both training and testing activity.
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5.5 Profiling

While runningmodels it can often be of interest to quantify how long particular parts of simulations take.
It can also be of interest to know the degree to which simulation time increases as, for example, network
connectivity is increased.

PROFILER ENABLE

The enable command enables profiling for the current simulation.

PROFILER START ”identifierString”
PROFILER STOP ”identifierString”

The start and stop commands should surround the commands to be profiled. It is possible to next
start and stop commands.

PROFILER REPORT

Once the simulation is completed, the report commandwill output a report of the total amount of time
spent between each respective identifierString.
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6 Stimulus Generation

Stimulation can be loaded from text files. NNQL also provides some basic stimulus generation capabilities
built in to the language, which are described in this section.

6.1 SEQ_GENERATOR Syntax (Sequence generator)

SEQ_GENERATOR N(1024) SIZE(10) STUTTER(1) SHIFT(3) SEQLEN(10) FILENAME(”sequence1.txt”) RUN
SEQ_GENERATOR SIZE(10) CURRENT(20) STUTTER(2) SHIFT(3) SEQLEN(20) FILENAME(”sequence2.txt”) RUN

The Sequence generator will activate groups of units in sequence over time. The number of time-steps is
equal to SEQLEN x STUTTER.

PARAMETERS

N Total number of input currents to stimulate (should not exceed the number of
neurons in the target nucleus).

SIZE Maximum number of input currents per pattern time-step (i.e., 10 neurons at a
time).

STUTTER Number of time steps per pattern (i.e., number of time-steps to keep stimulating
the same neurons).

SHIFT Amount of shift after each stutter is completed. If STUTTER = SIZE, then orthog-
onal (non-overlapping) groups of neurons are stimulated.

SEQLEN How many patterns.

FILENAME Name of file to save to.

RUN Command to execute the sequence generator.
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7 Future Directions

This sectiondiscusses enhancements and features that couldbedeveloped in future versionsofNNQL.

7.1 Conductance-based modeling

Here we specify the effects of specific neurotransmitters like glutamate, GABA, and dopamine, on partic-
ular types of cells. Additional syntax will be introduced, including:

• PROJECT FROM x TO y RELEASING z

• EXPRESS x IN NUCLEUS y

Examples:

1 CREATE NUCLEI ("SNpc", "STRIATUM")
2 INSERT NEURON IZ("phasic_spiking") INTO "SNpc" QUANTITY 100 LABELED "DAergic"
3 INSERT NEURON mediumSpiny(I,V) INTO "STRIATUM" QUANTITY 10000 LABELED "substanceP"
4 INSERT NEURON mediumSpiny(I,V) INTO "STRIATUM" QUANTITY 10000 LABELED "enkephalin"
5 EXPRESS "D1" IN "STRIATUM substanceP"
6 EXPRESS "D2" IN "STRIATUM enkephalin"
7 PROJECT FULLY FROM "SNpc DAergic" TO "STRIATUM" RELEASING ("DOPAMINE", "GLUTAMATE")
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